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A method is presented for the classification of protein crystallization images

based on image decomposition using the wavelet transform. The distribution of

wavelet coefficient values in each sub-band image is modelled by a generalized

Gaussian distribution to provide discriminatory variables. These statistical

descriptors, together with second-order statistics obtained from joint probability

distributions, are used with learning vector quantization to classify protein

crystallization images.

1. Introduction

X-ray diffraction can provide the three-dimensional structure

of biomolecules but relies on the growth of suitable crystals.

Protein crystallization experiments are dependent on a

number of parameters, including pH, temperature, precipi-

tating agent and other additives. Identification of the optimal

conditions for protein crystal growth is usually carried out by

screening numerous combinations of these variables. High-

throughput technology allows the automated screening of

thousands of crystallization experiments a day in structural

genomics centres, with imaging systems recording the results.

Each experiment must be monitored over a period of time and

the evaluation of large numbers of crystallization images by

eye is tedious and time consuming. It is unlikely that software

will ever replace the crystallographer’s judgement completely,

but automated categorization of the images according to

experimental outcome would drastically reduce the number of

images that require visual inspection.

Software to analyse crystallization images automatically,

based on features that can be quantified and used for classi-

fication, is being developed by a number of research groups.

Straight edges are an obvious characteristic of crystals that can

be detected (Zuk & Ward, 1991). Spraggon et al. (2002) and

Bern et al. (2004) use the Hough transform with Canny edge

detection to calculate classification variables, while Cumbaa et

al. (2003) use the Radon transform and compute an overall

score from detected lines. Other features used for the classi-

fication of crystallization images include statistical descriptors,

such as local variation (Bern et al., 2004) and local smoothness

(Cumbaa et al., 2003), and global parameters obtained from

local texture measures (Spraggon et al., 2002; Saitoh et al.,

2005). The Fourier transform can readily identify periodic and

directional structure and has been applied to extract textural

information from crystallization images by Bern et al. (2004)

and Walker et al. (2007). The approach of Pan et al. (2006)

combines the use of texture features and intensity statistics

with results from the Gabor wavelet decomposition.

Most methods for the analysis of crystallization images

attempt to classify the crystallization drop as a whole, or as

smaller blocks making up the drop. Currently, in the software

ALICE (Analysis of Images from Crystallization Experi-

ments), individual objects are identified within the crystal-

lization drop and evaluated separately (Wilson, 2002). Objects

are defined as connected sets of pixels above a threshold

determined by the intensity statistics, so that faint, particularly

out-of-focus, objects may not be identified and overlapping

objects are not evaluated separately but as a conglomerate.

Furthermore, the method does not take into account the

relationships between objects or their spatial arrangement,

and higher classification rates can be achieved by combining

this approach with the use of textural information obtained

from the crystallization drop as a whole.

Crystallographers can instantly assess the overall appear-

ance of the crystallization drop, as well as considering indivi-

dual objects within the drop. However, studies on the

classification of crystallization images undertaken in both

Oxford and York show surprisingly low agreement rates

between crystallographers (unpublished work). In fact, images

are often assigned to a different class when viewed by the

same person on another occasion. The judgement can be

subjective, so that accuracy and repeatability are not ensured,

whereas automated image analysis, whilst lacking the power to

comprehend the image scene entirely, can classify in a

predictable and consistent manner. The variability in human

classification must be taken into account when assessing the

classification success of software to analyse images from

crystallization experiments.
‡ Current address: EMBL Hamburg, Building 25A, Notkestrasse 85, 22603
Hamburg, Germany.
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2. Imaging system

ALICE is being developed in collaboration with the Oxford

Protein Production Facility (OPPF) at the University of

Oxford where it is now used routinely to annotate images. The

images shown were supplied by the OPPF, where crystal-

lization experiments are performed in 96-well Greiner plates

(micro-titre format) and the images are taken using an auto-

mated Oasis 1700 imaging system (Veeco, Cambridge, UK).

Native images are 1024 � 1024 � 8-bit bitmap (BMP) images

(�1 Mbyte in size, corresponding to a pixel width of about

3 mm).

3. Wavelet decomposition

Various measures related to texture can be defined in terms of

the correlation between intensities at different scales. As

wavelet transforms decompose an image into different levels

of detail, localized in both position and frequency, they are

particularly suited to texture analysis. Pan et al. (2006) use the

Gabor wavelet decomposition to provide eight sub-images

from which they calculate a response for each pixel. Here, we

use the multi-resolution analysis of Mallat (1989) with the

simplest wavelet function due to Haar (1910). At each level of

the wavelet transform, a combination of a low-pass filter,

giving a smoothed approximation, and a high-pass filter,

separating out the high frequency details, is applied. Applying

the filters in both the x (horizontal) and y (vertical) directions

gives four sub-images, each consisting of one-quarter of the

pixels in the original image, for a single-level transform (Fig. 1).

The vertical details in the image at this scale can be seen when

the high-pass filter is applied along x and the low-pass filter

along y, and vice versa for the horizontal details. Diagonal

details are apparent in the sub-image obtained by applying the

high-pass filter in both directions. Further levels of the

transform are performed by applying the filters to the smooth

approximation, i.e. the sub-image obtained by applying the

low-pass filter in both directions. At level k of the transform,

the number of pixels in each sub-image consists ofN/22k pixels,

where N is the number of pixels in the original image.

4. Image pre-processing

In contrast with other authors, who have studied individual

blocks within an image in order to classify texture (Cumbaa et

al., 2003; Bern et al., 2004; Pan et al., 2006), we have chosen to

examine the texture of the whole crystallization drop for

speed and simplicity. The image is first cropped to the size of

the well and the drop identified on a coarse grid. This is

achieved using a four-level wavelet transform to provide sub-

images of approximately 2000 pixels, compared with the 700�
750 pixels in the image of the entire well. The horizontal and

vertical sub-images are then combined and thresholding

applied to the resulting image to define a rough mask for the

crystallization drop, as shown in Fig. 2. This mask is sufficient

for the method involving classification of individual objects, as

the drop edge and objects due to splatter outside the drop can

be identified as such and ignored. However, a better mask is

required for wavelet analysis, as the edge of the drop in

particular would give rise to large wavelet coefficients. The

mask is therefore refined by dilation until pixels identified as

objects are reached. As objects outside the drop would

prevent the mask reaching the drop edge (see Fig. 2d), this is

performed after small objects beyond a certain distance from

the centre of gravity of all object pixels have been deleted.

Objects are defined as connected sets of pixels with gradient

magnitude above a pre-defined threshold (Wilson, 2002).

The gradient in the shadows around the drop satisfies this

criterion, resulting in the halo around the drop seen in

Fig. 2(e), which is easily removed by a further dilation of a few

pixels (Fig. 2f).

5. Wavelet detail modelling

The wavelet coefficients (details) indicate change and are

therefore zero for areas with no change and very small where

the change in the image is small. The histogram of a detail

image has a well defined shape with a single peak centred at

zero (see Fig. 3). The many very small coefficients can be

ignored, making wavelets ideal for image compression. Mallat

(1987) considered the distribution of the wavelet coefficients

in relation to the error on the reconstructed image and

provided a mathematical model. It was shown that the histo-

grams could be modelled by the functions
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Figure 1
Single-level wavelet decomposition of a crystallization image. The four
sub-images show smooth approximation, SXSY (top left), obtained by
applying the low-pass filter in both x and y directions; the vertical details,
DXSY (top right), obtained by applying the high-pass filter along x and
the low-pass filter along y; the horizontal details, SXDY (bottom left),
obtained by applying the low-pass filter along x and the high-pass filter
along y; and the diagonal details, DXDY (bottom right), obtained by
applying the high-pass filter along both x and y. Each sub-image has been
rescaled independently to use the full range of display intensities.
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f ðxÞ ¼ N�

2�� 1=�ð Þ exp½�ðjxj=�Þ��; ð1Þ

where �ðxÞ is the gamma function defined by

�ðxÞ ¼
Z1

0

t x�1 expð�tÞ dt

andN is the number of pixels. Here, �models the variance and

� the decay rate of the peak, with small values of � corre-

sponding to a more pronounced peak shape. The family of

functions includes the Gaussian distribution with � = 2 and the

Laplacian distribution � = 1. The parameters � and � can be

determined from the first and second moments of the histo-

gram,

m1 ¼
Z1

�1

xj jf ðxÞ dx; ð2Þ

and

m2 ¼
Z1

�1

x2f ðxÞ dx; ð3Þ

as can be seen by substituting equation (1) in equations (2)

and (3) and integrating. This gives

� ¼ m1� 1=�ð Þ
� 2=�ð Þ ð4Þ

and

� ¼ F�1 m2
1

Nm2

� �
; ð5Þ

where

F xð Þ ¼ �2 2=xð Þ
� 3=xð Þ� 1=xð Þ : ð6Þ

In practice, we use
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Figure 2
(a) The original image cropped to the size of the well. (b) The low-resolution image obtained from the combined fourth-level detail sub-images and (c)
the rough mask obtained from this. (d) The problem of refining the mask in the presence of splatter is demonstrated and (e) resolved. ( f ) The final mask,
after further dilation.
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m1 ¼
1

N

XN=2j

i¼1

!j;i

�� �� ð7Þ

and

m2 ¼
1

N

XN=2j

i¼1

!2
j;i; ð8Þ

where j denotes the level of the transform and !j;i is the ith

wavelet sub-band coefficient at level j. The value of � was

found using the technique described by Sharifi & Leon-Garcia

(1995) with a look-up table of pre-calculated values for �
between 0.01 and 7.0, in steps of 0.01. The inverse of the

function in equation (5) is a monotonic increasing function so

that, when the approximate value of � has been found from

the look-up table, the value can be refined using the bisection

method.

Van de Wouwer et al. (1999) (amongst others) applied this

modelling technique for texture characterization and found

that the statistics of the wavelet detail histograms could be

used to classify natural textured images (bark, brick, fabric

etc.). We have found that images from crystallization experi-

ments can also be modelled by these generalized Gaussian

functions and the parameters, � and �, used for classification.

Fig. 3 shows the histograms and models obtained for an empty

drop and for a drop containing precipitate. Empty drops give

rise to many very small wavelet coefficients, leading to a

narrow histogram with a very pronounced central peak,

whereas drops containing precipitate give a wider spread of

values and histograms with less sharp peaks. Such differences

are reflected in the values of � and �.
We use the lack of fit to provide further discriminatory

variables. In Fig. 3, the model for the empty drop is not quite

as tall and narrow as the actual histogram, whereas the

situation is reversed for the precipitate image. This situation is

typical for images from these classes and can therefore be

exploited for classification, along with other differences, such

as a lack of symmetry in the histograms, which are often seen

when crystals are present. In order to calculate further clas-

sification variables, the histograms were divided into regions

by identifying four points (see Fig. 3). The first is the point

where the model starts to increase more rapidly from zero, i.e.

when f(x) > 2/M for the first time, where M is the number of

pixels in the wavelet sub-image. The symmetric equivalent

gives the fourth point. The second and third points are either

side of the central peak where the histogram and model first

cross. Thus, five regions are obtained over which the difference

between the histogram and the model can be calculated. In

fact, it was found that the differences over the tails of the

histograms could not be used for discrimination and so only

three variables are calculated, these being the sum of the

differences between the histogram and the model over the

bins in each of the three regions of interest.

One further variable is calculated for each wavelet sub-

image. This is the information entropy given by

HðxÞ ¼ �
XN
i¼1

pðxiÞ log pðxiÞ
� �

; ð9Þ

where the probability, p(xi), is determined from the normal-

ized histogram of wavelet coefficients for that sub-image. We

apply a three-level wavelet transform giving three sub-images,

corresponding to the horizontal, vertical and diagonal details,

for each level, i.e. nine sub-images in total.

The algorithm to calculate classification variables from the

wavelet detail coefficients can be summarized by the following

steps:

(a) Perform a three-level two-dimensional wavelet trans-

form to obtain nine detail sub-images.

Then, for each sub-image:

(b) Calculate the first and second moments using equations

(7) and (8).

(c) Calculate � and � from equations (4) and (5).
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Figure 3
Histograms of detail images modelled by a generalized Gaussian. (a) The
histogram of first-level detail coefficients (dotted line) and model (solid
line) for an empty drop with � and � parameters of 1.24 and 1.14. (b) The
histogram of first-level detail coefficients (dotted line) and model (solid
line) for an image containing precipitate with � and � parameters of 1.80
and 1.47. The points defining the five different regions used to calculate
‘lack-of-fit’ parameters are marked on each histogram.
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(d) Obtain the histogram of wavelet coefficients and

calculate the entropy using equation (9).

(e) Create the model using the parameters from step (c) and

equation (1).

( f) Identify the four points that divide the histogram into

different regions.

(g) For each of the three regions of interest, sum the

differences between the histogram and the fitted model.

We therefore have six variables, �, �, entropy and the

difference measures for three regions of the histogram, for

each sub-image, giving a total of 54 potential classification

variables. Univariate tests together with visual inspection were

used in exploratory data analysis to assess the discriminatory

power of the variables. All variables obtained from the first

two levels of the wavelet transform appeared to provide some

class separation. However, on level three, none of the vari-

ables for the horizontal or vertical sub-images appeared

significant in t-tests, whereas, surprisingly, those for the diag-

onal details on this level did show significant discriminatory

power. This was confirmed in classification, where better

results were obtained using only 42 variables (six from each

sub-image on each level except the third, where only the six

variables from the diagonal sub-image were included)

compared with those obtained when all 54 variables were

used.

6. Joint wavelet statistics

As well as the first-order statistics determined from each detail

sub-image, we also calculate statistics from joint conditional

histograms. The decay of the wavelet coefficients across the

levels of the transform can be used to characterize different

types of edges (Mallet & Zhong, 1992). Sharp changes such as

crystal edges give rise to large wavelet coefficients across the

scales, whereas smoother changes in grey scale (due to

shadows, for example) will produce wavelet coefficients that

change gradually with subsequent levels of the transform. This

information can be characterized by considering the correla-

tion between corresponding wavelet coefficients on different

levels of the transform.

The spatial and scale-to-scale dependency of wavelet coef-

ficients has been utilized in image compression (Buccigrossi &

Simoncelli, 1999) by modelling joint conditional histograms

constructed between wavelet coefficient values at different

levels. Pairs of wavelet coefficients at the same location in the

wavelet sub-image are compared with a corresponding

wavelet value in the same relative location at a neighbouring

frequency scale. As we are interested in sharp features that

may disappear at lower resolution, we condition the coarse-

scale wavelet coefficients on those at a finer scale. It should be

noted that this is the reverse of the approach of Buccigrossi &

Simoncelli (1999), where the interest is image compression.

The second-order histogram is an estimate of the joint

density function of pairs of wavelet coefficients. We use the

absolute values of the wavelet coefficients, which are binned

before the conditional histogram is created. In the joint

histogram, the value at position (i,j) is the number of pixels

with absolute wavelet coefficient value in bin(i) on the coarse

scale and in bin(j) at the same location on the finer scale, i.e.

Hn i; jð Þ ¼
X
x

X
y

1;
j!kðx; yÞj 2 binðiÞ and

j!kþ1ðx; yÞj 2 binðjÞ
0; otherwise;

8><
>: ð10Þ

where !k are the wavelet coefficient values at level k and n

indicates the sub-image (vertical, horizontal or diagonal

details). Further notes on joint histograms are given in

Appendix A. To increase the information content and provide

some level of invariance to orientation, we combine the three

detail sub-images to obtain

Hi;j ¼
X3

n¼1

Hn i; jð Þ: ð11Þ

By normalizing the joint histogramHi;j so that the coarse-level

(level k + 1) values sum to 1 for each fine-scale (level k) value,

we obtain the joint conditional histogram hi;j. This gives the

probability that the coefficient value on level k lies in bin(j)

given that the coefficient value at the corresponding position

on level k + 1 lies in bin(i), i.e.

hi;j ¼ P !kþ1

�� �� 2 binðjÞ \ !k

�� �� 2 binðiÞ� �
: ð12Þ

Fig. 4(b) shows conditional histograms for second-level coef-

ficients conditioned on the first-level coefficients for the three

images in Fig. 4(a), where the conditioned wavelet values have

been normalized so that brightness corresponds to probability.

These plots were obtained from the original coefficient values

rather than absolute values and show the characteristic bow-

tie pattern first noted by Buccigrossi & Simoncelli (1999). In

the central linear section of the pattern, the conditioned

wavelet coefficients are close to zero, irrespective of the

conditioning wavelet value. Outside this range, the distribu-

tion of the conditioned wavelet coefficients is dependent on

the magnitude of the finer-scale coefficients. As the joint

histograms are roughly symmetric about the horizontal and

vertical axes, we use the joint conditional histogram of the

absolute magnitudes in the statistical analysis, as shown in

Fig. 4(c). It can be seen that the joint distributions differ

between classes. For example, the variance of the conditioned

coefficients for large values of the conditioning coefficients is

greater for images containing many crystals and less for empty

drops (see Fig. 4). Suitable statistical measures that describe

the characteristics of the distributions can be exploited for

classification.

For each distribution of the conditioning wavelet coeffi-

cients, i, we calculate the entropy using equation (9) and the

expected value, variance, skewness and kurtosis according to

the following equations:

E ið Þ ¼
X
j

hi;jmi; ð13Þ

Var ið Þ ¼ E mi � E ið Þ� �2n o
; ð14Þ
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Skew ið Þ ¼
E mi � E ið Þ� �3n o

�3
; ð15Þ

Kurt ið Þ ¼
E mi � E ið Þ� �4n o

�4
; ð16Þ

where mi is the midpoint of bin(i) and � ¼ ½VarðiÞ�1=2.
Fig. 5(a) shows the expected value distribution for three

typical images from each of the seven classes. For each image,

the expected value of the absolute magnitudes of the condi-

tioned coefficients is shown for each of the 31 bins of the

conditioning wavelet coefficient histogram. Brighter pixels

indicate higher values and it can be seen that different types of

research papers
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Figure 4
Conditional histograms from three images of different class. (a) Images of an empty drop, a drop containing precipitate and a drop containing crystals.
(b) The conditional histograms obtained from these images for first-level wavelet coefficients conditioned on the second-level coefficients and (c) those
using absolute values. Here, brightness corresponds to probability but has been rescaled to use the full range of display intensities. The x axis corresponds
to the conditioning wavelet coefficient magnitude and the y axis to the conditioned wavelet coefficient magnitude.
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image have different distributions of expected values. This is

also true for the variance, skewness, kurtosis and entropy of

the conditioned wavelet coefficient distributions.

The mean and the first to 99th percentile range of each of

these statistical values over the histogram bins were found to

summarize the distributions best and provide discriminatory

variables. The average expected values for ten images from

each class are plotted in Fig. 5(b), in which the correlation with

class can be seen.

The algorithm to calculate classification variables from the

joint conditional histograms can be summarized by the

following steps:

(a) Obtain the absolute values of the wavelet coefficients

for each of the nine detail sub-images from the three-level

two-dimensional wavelet transform.

Then for k = 1 and k = 2:

(b) For each pair of sub-images (one from level k and one

from level k + 1), calculate the joint histogram, Hn i; jð Þ, using
equation (10).

(c) Combine the histograms from the three types of sub-

image to obtain Hi;j using equation (11).

(d) Normalize Hi;j to obtain the conditional joint prob-

ability distributions, hi;j.

(e) Calculate statistical measures for each conditioning

distribution, i, using equations (9) and (13)–(16).

( f) Calculate the mean and percentile range of each

statistical measure.

This gives a further 20 variables, i.e. both the mean and

percentile range of each of the five statistical measures from

the conditional joint probability distributions obtained from

the first and second levels of the transform and from the

second and third. Further pairwise combinations were

considered but did not improve the classification results.

7. Results and discussion

Supervised learning algorithms are trained to associate a

certain output with particular inputs so that the vector of

values obtained from the classification variables, or feature

vector, can be used to assign an object to a particular class.

Training requires a set of input vectors that have been pre-

classified by eye and an independent test set for validation to

avoid problems with over-fitting. It should be noted that the

number of classes is somewhat arbitrary, as crystallization

experiments produce a continuum of results rather than

discrete outcomes. Whatever the number, there will be some

overlap between neighbouring classes, as demonstrated in

studies to assess the reliability of human classification

(unpublished work). Here, we use the following seven classes

for crystallization outcomes:

0, empty drop;

1, denatured protein;

2, amorphous precipitate;

3, oil drops; phase separation; crystalline precipitate;

4, micro-crystals;

5, crystal clusters;

6, single crystals.

Fig. 6 shows an example image from each class. We found

that this seven-class system gave an average agreement rate of

�70% for 16 crystallographers but that, in most cases where

the scores do not agree, they differ by only one class. Allowing

‘agreement’ to tolerate a one-class difference gave an average

agreement rate of �94% and allowing a two-class difference

gave close to total agreement, at �99%.

For the wavelet method, descriptors were calculated for a

training set of images classified by eye. This training set,

consisting of 250 images from each of the seven categories, was
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Figure 5
(a) The expected values calculated for each conditioning wavelet coefficient distribution, displayed as image intensities for three typical images from
each of the seven classes. (b) The mean expected value for ten images from each class. Here, em indicates class 0, na class 1, pt class 2, qi class 3, vi class 4,
pi class 5 and xt class 6.
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used to train a learning vector quantization (LVQ) neural

network (Kohonen et al., 1992; the LVQ_PAK program can be

downloaded from http://www.cis.hut.fi/research/som-research/

nnrc-programs.shtml). The resulting LVQ code vectors were

used to classify an independent test set consisting of 150

images from each class. The training data for the object-based

approach comprised �9000 individual objects, classified by

eye into 13 different object classes. The LVQ code vectors

produced were used to classify the objects identified in the test

set images and image scores were derived from these object

scores.

Table 1 shows the results from both methods in the form of

a truth table. The diagonal entries give the percentage of exact

matches with the scores given when the images were classified

by eye. However, misclassifications between neighbouring

classes need not necessarily be considered incorrect if the

continuous nature of the experiment and the diversity in

human classification are taken into account. More serious

misclassifications appear further away from the diagonal, with

images classified too low above the diagonal and images

classified too high below the diagonal.

The use of parameters derived using wavelet methods leads

to a higher proportion of false positives (i.e. empty drops

classed as crystals) and false negatives (crystals classed as

empty drops) in comparison with the object-based method.

This is not unexpected, as the majority of the crystallization

drop can be empty in the case of single crystals, particularly

those growing at the edge of the drop. In such cases, classifi-

cation based on individual objects is likely to perform better.

However, many images have features that occur throughout

the drop and are better suited to texture-based methods. As

the methods exploit complementary features, their combina-
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Figure 6
Example images from the seven categories used in classification. (a) Empty drops score 0. (b) Drops with denatured protein or other unwanted outcomes
score 1. (c) Precipitate scores 2. (d) Outcomes better than precipitate but non-crystalline score 3. (e) Micro-crystals score 4. ( f ) Crystal clusters score 5.
(g) Single crystals score 6.

Table 1
Agreement rates between the scores given by ALICE and those given
when classified by eye.

The columns correspond to the results of automated analyses for each class
(according to the visual score) in the rows of the table, so that the diagonal
entries show exact matches. The figures given are percentages of the 150
images in each class (so that the values in each row sum to 100%) and bold
type indicates acceptable classifications.

6 5 4 3 2 1 0

Results obtained using classification variables calculated for individual objects
within the drop

Class 6 41.3 26.7 12.7 6.0 8.0 2.0 3.3
Class 5 11.3 24.7 26.7 14.0 14.0 8.0 1.3
Class 4 5.3 12.0 34.7 19.3 26.0 1.3 1.3
Class 3 2.0 4.0 10.7 35.3 43.3 1.3 3.3
Class 2 0.7 0.0 0.0 9.5 89.2 0.7 0.0
Class 1 1.4 3.4 4.7 7.4 25.7 56.1 1.4
Class 0 3.3 0.7 3.3 0.7 2.0 9.3 80.7

Results obtained using statistical measures obtained from wavelet analysis
Class 6 50.7 24.0 15.3 3.3 0.0 0.0 6.7
Class 5 20.0 38.0 34.7 3.3 2.7 0.0 1.3
Class 4 16.0 24.0 20.7 14.7 13.3 6.0 5.3
Class 3 5.3 6.0 12.7 33.3 28.7 10.0 4.0
Class 2 0.7 0.0 3.4 4.7 83.8 7.4 0.0
Class 1 2.0 6.8 14.2 7.4 12.8 54.7 2.0
Class 0 10.7 1.3 0.0 1.3 2.0 0.7 84.0
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tion leads to improved classification rates. In crystallization

image categorization, false negatives mean missing crystals

and are therefore much more serious than false positives. The

final score for the image is taken as the maximum score

obtained by either method individually and the results are

shown in Table 2. However, in order to reduce the number of

false positives, in cases where the wavelet method indicates

crystals and the object-based method suggests an empty drop,

the image score is taken to be zero.

As truth tables involving seven classes can be difficult to

analyse, the results from Tables 1 and 2 are summarized in

Table 3. Here, the visual scores are represented by just four

classes and the automated scores by just three: images that

should definitely be looked at by the crystallographer (yes),

those that maybe should be looked at (maybe) and images that

need not be looked at (no). The relatively large number of

false positives occurring is due mainly to images from class 1,

which contains examples with denatured protein, wrinkled

skin across the drop and foreign bodies such as fibres. Such

images will invariably look more interesting in terms of the

classification variables than they really are and more impor-

tance is given to reducing the number of false negatives, i.e.

missed crystals. It should be noted that our test set was not

carefully chosen, but rather contains real examples with

problems due to focus, light and shadows. Fig. 7 shows two of

the images containing crystals that were classified incorrectly.

In Fig. 7(a), the misclassification is due to the very low contrast

and, in Fig. 7(b), it is due to the fact that the crystals lie in

shadow at the edge of the drop. Work to reduce the number of

false positives due to such problems will continue.

Rather than determining the class for each object or image

from a single winning vector, the LVQ can be used to provide

a probability for every class, calculated from the classes of the

top ten vectors weighted according to the distance measure. A

better way of combining the results using probabilities is being
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Figure 7
Examples of images that were misclassified. Although both images
contain crystals, the poor contrast in (a) and the shadows at the edge of
the drop in (b) caused these images to be classed incorrectly.

Table 2
Classification rates for the scores given by ALICE when the object-based
method and the texture-based approach are combined.

The columns correspond to the results of automated analyses for each class
(according to the visual score) in the rows of the table and are given as
percentages of the 150 images in that class. Bold values indicate acceptable
classifications. The results were obtained by taking the maximum score from
the two individual methods.

6 5 4 3 2 1 0

Class 6 61.3 23.3 8.7 2.0 0.7 0.7 3.3
Class 5 23.3 37.3 32.0 4.7 1.3 0.0 1.3
Class 4 18.0 24.7 32.7 16.0 6.7 0.7 1.3
Class 3 5.3 7.3 18.7 45.3 21.3 0.0 2.0
Class 2 1.4 0.0 3.4 13.5 81.1 0.7 0.0
Class 1 2.7 8.8 15.5 12.2 21.6 38.5 0.7
Class 0 7.3 1.3 2.7 0.7 2.0 8.7 77.3

Table 3
Summary of classification results.

The three columns correspond to automated scores indicating images that
should definitely be looked at by the crystallographer (yes), those that maybe
should be looked at (maybe) and images that need not be looked at (no). Each
row of the table shows the class according to the visual score, where ‘crystals’
includes classes 5 and 6, ‘micro-crystals’ corresponds to class 4, ‘precipitate’
includes classes 2 and 3, and ‘rubbish/empty’ covers classes 0 and 1.

Yes Maybe No

Results obtained by the object-based method
Crystals 71.7 21.0 7.3
Micro-crystals 52.0 45.3 2.6
Precipitate 8.7 88.7 3.6
Rubbish/empty 8.4 17.9 73.8
Results obtained by the wavelet-based method
Crystals 91.4 4.7 4.0
Micro-crystals 60.7 28.0 11.3
Precipitate 14.1 75.3 10.7
Rubbish/empty 17.5 11.8 70.7
Results obtained when the two methods are combined
Crystals 93.0 4.4 2.7
Micro-crystals 75.4 22.7 2.0
Precipitate 18.1 80.6 1.4
Rubbish/empty 19.2 18.3 62.6
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sought and will ideally also allow the class probabilities of one

object to influence those of another.

The aim is not to replace human classification but to reduce

the number of experiments that need to be examined by eye.

Automated scoring allows the images to be examined in order

of merit and, when high-scoring conditions are confirmed, no

further images need be considered. The potential for the

development of optimization procedures is also important; not

only will many promising initial conditions be identified, but

failed experiments will also be recorded, allowing the possi-

bility for automated screening protocols to be developed via

data-mining techniques.

APPENDIX A
Co-occurrence matrices provide a means of quantifying

correlated features between different images. The joint

histogram is a special case of a co-occurrence matrix where the

values are binned into non-overlapping intervals. The co-

occurrence matrix gives the frequency of occurrence of a pixel

value in one image for any given value of the same pixel in

the other image. For example, consider two simple 5�5 pixel

images, A and B, whose pixels can take four values, 0–3.

The co-occurrence matrix of the A and B matrices is the

4�4 matrix shown below (since there are four possible pixel

values). The elements in the matrix are the number of times a

given value in A leads to a given value at the corresponding

pixel in B.

From this we can immediately see that, while the other

values are fairly uncorrelated, a 3 in A always leads to a 1 in B,

and a 1 in B always leads to a 3 in A.

In the current problem, wavelet coefficients at one level of

detail may be correlated in different ways with coefficients at

another level. Individual pixel noise and fine-grained textures

are likely to be uncorrelated between detailed and coarse

images, whereas strong edges will give rise to features across

several levels of detail.
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